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1. Introduction

This paper investigates the evaluation of steady state system

availability for a system with parallel redundancy, when there is a pool ]
of spare components. There may be several systems supported by this same
pool. The pool is managed by a supplier following an (S,S-1) inventory
policy under continuous review.

The basic sequence of events is: component fails; spare component’
is obtained, immediately if one is available; component 1s installed. Be-
cause of redundancy, the system need not be down while all this is occurring.
When a component fails, a good component is made available to the pool manager
a resupply time later. This time represents time to repair the component, or
order it if it is not repairable.

Two alternative basic premises are considered: :

"Cold Standby" - Component only fails when it is being used,

and only one of the parallel components 1is

used at a time. :

* "Warm Standby'" - All of the parallel components are subject to
failure at any given time, at the same rate.
Events are viewed as a Markov process and the steady state difference

equation approach is used (c.f. Gross and Harris). The equations are pre-~

sented in detail for our basic assumption set: one system is supported;

L LT

there is warm standby; components can fail during installation. We indicate

4

how to modify the difference equations to relax each of these assumptioms.
However, multiple systems supported cannot conveniently be handled unless
there is warm standby and the spare pool manager follows a FIFO policy; i.e.,
backorders are eliminated in the order in which they occur.

It is assumed resupply and installation times are independently and

identically distributed. In general, they must also both be exponential. How-
aver, in the second part of this report these cases are considered: general

installation and resupply times but zero spares; deterministic installation

times; exponential installation times but deterministic resupply times. .
Exact results are possible for the first two cases, an approximation for the

deterministic resupply times. '




The steady-state difference equations are not explicitly solved in
this paper - there is no need as a simple computer program, for general

number of components, bypasses this step.
2, Earlier Work

Surprisingly, considering the important practical applications, the
problem addressed in this paper has received relatively little attention in
the literature. Forry [5] reports on a model, ACCLOGTROM, with antecedents
dating back to the 1960's, which not only evaluates system availability under
more general system structures than are considered here, but optimizes in-
ventory investment as well. However, this model relies on a simplification
which can lead to very poor estimates in some cases. Similarly, Bein [2]
considers evaluation of system availability in a system with redundancy
and supply, and allows for partial degradation, but his results do not rest
on a rigorous foundation.

We have learned that in the 1960's, Amster and Morra [1] at Bell Labs
developed a working model based on the steady state difference approach,
assuming exponential resupply, installation and repair times, and considering
a single system supported by the pool manager. There are a number of rigorous
published papers pertaining to the availability of a single system with re-
dundancy and repair, but zero installation time., Among these, Natarajan
and Rao [8] allow for deterioration of units in storage and derive steady
state availability and expected time to system failure under exponential
assumptions. Srinivasan and Gopalan [10] derive the mean time to system
faiiure and the Laplace transform of the state probabilities, p*(s), for a two
unit system with one repair channel and general repair distribution (by
taking the limit as s goes to o of s p*(s), steady state availability can
be determined). Gopalan*[6] generalizes these results to n units with fail-
ure rate f(n) (but still one repair facility), thereby allowing for units in
supply. Subramanian et al [11l] allow for general failure distribution
for an on-line unit, but exponential distributions for standy failures

and repair times.

*
From a summary in International Abstracts in Operations Research,

3
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3. Notation

A - failure rate for
a system Cold Standby
a component Warm Standby

- resupply rate, i.e, reciprocal of mean resupply time

u
¥y — installation rate

n - number of systems supported by pool manager
¢ - number of redundant components per system

8 - pool manager's scockage parameter

k ~ number of components in resupply
i - number of components being installed

Py = steady state probability of i, k.

4., Steady State Equations

The steady state equations are given as Figure 1., The terms align with
events this way:
1st Term: Instantaneous probability of leaving state,
2nd Term: State is entered because operating component fails.
3rd Term: In-installation component fails.
4th Term: Component is resupplied.
5th Term: Installation of a component is completed.

Tr £acilitate comprehension of the equations we make a number of observa-
tions. So long as k < s, there are no components on backorder. Since each
component fails with rate ), total failure rate is (c)()). This rate de-
composes into failure rates of (c~i)(2) for operating components and (i) ()
for in-installation components. The resupply rate of (k)(u) is explained
in standard texts and the same logic justifies use of (i)(y) to represent
the installation rate. A failure is instantaneously foliowed by the begin-
ning of an installation (note modification when k = s) so i does not change

if an in-installation component fails.




Eguations
for k =otos -1
o= - [AC + ku + Yi] pik + )\(C -1+ 1) pi—l,k-l

+ )Py gt (W) Qt1)Py gy * YU+LP g

for k = s change (u)(k+l) Py ., in above to (W (L) Pyy 4y
’ ’

for k s+l toc + s
o=-Dhc-k+8) +ku+vi)p  +Ale-1- (D) +slpy

NG g g D EFD) Py gy F Y(1+1) Poyy g

FIGURE 1 i

STEADY STATE EQUATIONS




If k > s, a resupply eliminates a backorder and results in an additional in-
installation component. Conversely, if an operating component fails when k > s,
a backorder is created and i does not change. Total components which can
fail are ¢ - (k-s) since there are k-s backorders.

Modifications. If in-installation components cannot fail, then
the probability of failure is (1) (c~1i) or (A) (c - (k-s) - i) if k > s.

The terms representing what will happen upon failure of an in-installation

component are eliminated. Similarly, "cold" standby or "semi-warm" are
modelled by more general forms for xg’ the failure rate when there are g
good components installed., If the pool manager is resupplied by a repair
process with m channels, then the resupply rate becomes the minimum of
(kp, mp). Multiple systems are treated later.

Solution of Equatiomns

Clearly, so long as A,u are > o, all feasible states communicate.
Since the transition probabilities are homogeneous, a unique stationary
distribution exists,

A FORTRAN computer program for solving the equations for general
¢ constitutes Figure 2. The program generates the transition matrix of size
z by z if there are 2z states. The row for leaving and entering state (o0,0)
is eliminated, and a row 1s added which represents the requirement that the
stationary probabilities sum to 1.

In the computer program function ISTAF converts state index
i,k into a unique single state number. Subroutine ASSIGN ~reates an entry
in the transition matrix based on the coefficient fed it from the MAIN
program. Subroutine LEQT2F solves matrix equations of the form A x = B,
and replaces B with the solution x.

If a state does not exist ASSIGN detects this; e.g., in the
equation for Pi,k’ pi-l,k does not exist if i = o. ASSIGN simply does not
create an entry. Also k < c + s - i1 since (no. in resupply) + (no. operating)
+ (no. in-installation) < c + s.

For the system to be unavailable, there must be 0 operating
components; i.e., either 1 + k = ¢ + s, or 1 = ¢c. Probabilities of states
which satisfy either of those conditions are summed. Solutions generated

by the computer programs have been verified by simulation, and by analytic

means for special cases. 6
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Note that the total number of states is (c+1)(c/2 + s+1) as:
for k = o to 8, 1 = 0 to ¢ for a total of (s+1)(c+l) states

for k = s+ 1 toc+s8,1i=o0toc - (k-s) for a total of
(c) (c+1) /2 states.

5. Multiple Systems Supported

Basic Assumption Set. Under warm standby and FIFQO issue policy, by

the pool manager, the state probabilities are no different for a problem with
n systems and ¢ components than they are for a problem with 1 system and (n) (c)
components. Furthermore, let there be B non-operating components. Choose a
subset of ¢ components from the total of (n)(c). Then the conditional prob-
ability that all ¢ are not operating does not depend on how the c were chosen
from the nc provided only that status was not a basis of selection.

In particular, if B_ are the number of components not operating in

I
weapon system I, I chosen at random,

C
- - 3 = i- (d-1)
Pr(B; = c|B = j) T, nc - (1D

This 1s an example of sampling without replacement. The probability the
first component of system I is not operating given B = j is j/(n)(c). The

protability the second component 1is not operating is (j-1)/(nc-1), and so on.

Altenative Assumption Sets. To handle alternative assumption sets, the

state space must be greatly expanded so that component status is gpecified by
gystem, number up as well as number in installation. Under warm standby this
is required for any issue policy which considers system status; e.g. when
there are backorders and a unit is received from resupply, issue to the
gsystem with most non-operating components. Under cold standby the expanded
state space is always required because the total failure generation rate
depends on the distribution of non-operating components. If n = 2 and

¢ = 2 and 2 components are backordered, the failure rate will be lower if

both backorders are on the same system ()rather than 2)).

i o5 St o K
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6. Zero Spares, General Distribution

If the pool manager has no spares, we redefine the state space, dropping i
and letting P be the probability that k units are in "'service', where service
encompasses both obtaining the spare and then installing it. Our problem re-
duces to a state dependent Poisson arrival process - the component failures -
with general service distribution. Brumelle [3,4]* proves that the steady
state number of components in service is then independent of the service dis-
tribution, depending only on mean service time.

Clearly then, steady state system avallability is independent of service
distribution; i.e., it is determined by distribution of operating components
which in turn is determined by distribution of components in service. Thus,
the results found using the steady state equations, correct for the exponential,
must be generally applicable.

If components can fail during installation, these failures should be con-
sidered as prolonging the service time, and should not be included in :he
failure rate used to get the Py Kaplan showed how to get expected service
time in this case for general resupply distribution, and exponential or deter-
ministic installation time. For convenience, the relevant materiel is re-

printed as Appendix 2.

7. Deterministic Installation Time (y)

Given failures during installation, system availability for any resupply
time distribution can be determined by building on the state esquation ap-
proach. Let the states be defined only in terms of number in resupply k.
Then availability at time t + T depends only on the value of k at time t
and the number of distinct components which fail in the interval (t, t + 1J.
The rationale is that any component which 1s either operating or in-installation
at time t will be operating by time t + T provided it does not fail in the interim.

Once a component fails in (t, t + 1] it cannot be made to operate by time t + rt.

*
Second reference is an abbreviated but more widely circulated version of first
reference. Brumelle's work carries forward work by Sherbrooke [9] and others.

9




Thus, defining v(t) as the number of components in resupply at time t,

expected unavailability at time t + 1 is

s Y

r pr(v(t) = k) (1l-e " +

k=0

s+c

I pr(v(t) = k) @-e Tyem k)
k=s+1

For steady state unavailability, we substitute the steady state probabilities
of k in resupply. These can be determined from the difference equations for

general resupply distribution and are [7]

p, = i S P
k 1=1 pi o
cts k b
k=0 i=1 "y
Ai = () [c-max (o,i-8)]

Mm@

8. General Resupply Distribution

There is a rationale for using the exponential to model other resupply
distributions. Consider a simplified version of the state space in which only
the value of "k" 1s of concern; i.e., we are not concerned with the relative
proportion of items which are operating versus in-installation. We assume
failure can occur during installation so that the failure rate depends only
on the number in resupply and not on the breakdown between operating and in-
installation components. Then the Brumelle result cited in section 6 applies
to the number in resupply; i.e. service time 1s equated to resupply time, and

it is as if there were no installation time.

© g
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What this argument shows is that in our original problem P, = Zpik found
i
using exponential assumptions holds for genmeral resupply distribution. It

suggests that results for system availability based on the exponential may
be acceptable approximations for other resupply distributions. In the table
following, simulation results for deterministic resupply times are compared
to theoretical results based on the exponential. In all examples shown, c¢
was set to 2, pto 1l and s to 1. Other examples tried gave similar results.

A text book approach [cg Kleinrock] to treating a general resupply distri-
bution would be to model it as a sum and/or mixture of exponmentials. Deter-
ninistic resupply time would be approximated by an Frlangian of order n, the
approximation improving as n is increased. The disadvantage is that the state
space must be greatly expanded to specify the n possible stages for each com-
ponent in resupply.

A different approach, based on Brumelle's findings for state dependent
queues is discussed in the Appendix. It is applicable to deterministic re-
supply, which is of practical interest, either because it represents ship time
from supplier to pool manager, or because component repair time is quite
predictable. Preliminary results with this different approach are only
partially encouraging, but the derivation may also be of academic interest,

for the insights it offers to the implications of Brumelle's work.
9. Conclusion

While this paper provides a number of useful results, it highlights two
areas for further research: 1issue policies for a pool manager supporting
multiple systems, and better approximations or exact solutions for general

resupply distributions.

11
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T Simulated
1 0.45%
2 0.16%
.5 1.30%
1 6.29%
2 2.95%
) 13.8%

2 0.0377%
.25 1.18%
TABLE 1
UNAVAILABILITY
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Exponential

0.41%
0.14%
1.28%
6.127
2.81%
13.7%
0.0337%

1.197%
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APPENDIX I

A HEURISTIC FOR DETERMINISTIC RESUPPLY TIMES

This Appendix is organized so that the reader need only delve as deeply
as his interest takes him. We begin with results, then the basic concept,
followed by the mathematics and an example.

Results. The table following 18 a reprint of the table in the text, with
heuristic projections also shown. Values in parenthesis are the estimated
standard deviations of the simulation percent results. One case was added,
for inputs for which it was suspected the heuristic might do particularly
badly.

The heuristic helps for cases in which the exponential error, as a %
of the true value, is highest (cases 1,2,7). It sometimes makes things worse,
but the error is never a large 7 of the simulated value.

Concept. There are three steps:

(1) Calculate all Py and instantaneous transition probabilities as
if supply were exponential.

(2) For each state in which the system would be down, reestimate
expected time in that state assuming that the values calculated in Step (1)

hold for all other states, and using additional results of Brumelle.

(3) Set pik = Pyy (————giggllgg) where

RESTIME is the reestimated time from Step (2) and EXPTIME is the time found
in Step (1) under the exponential assumption.

In using results of Brumelle, we will refer to the "reduced" system.
This is the system as discussed in Section 8 for which his results are
applicable, in which we do not distinguish between components in installation
or operational. Recall also that in this context resupply and service times
are synonomous.

A more involved version of the heuristic would execute Step 3 for all
states, normalize so that probabilities sum to 1, and posaibly iterate.

Expected Time in State (ET). Let G(t) be the probability the state is
not left by time t. (Subscript i,k is omitted) It is well known that expecta-

tion can be calculated as:

(A1) ET = [ G(t)dt
o




Case A
1 .06
2 .06
3 .06
4 .25
5 .25
6 .25
7 .03
8 .03
9 .03

.25

.125

Simulated

0.45%/(.006)
0.16%/(.003)
1.30%/(.013)
6.29%/(.031)
2.95%/(.026)
13.8%/(.07)
0.037%/(.0009)
1.18%/(.010)

3.78%/(.033)

15

Exponential

0.41%

2.817%

13.7%

0.033%

Heuristic

A4

.15%

1.35%

6.35%

2.91%

14.1%




A state can be left through resupply, failure or installation. These
events are independent so 1if Gl(t) pertains to probability of no resupply

and Gz(t) pertains to the other 2 events (no failure or installation)

A(2) ET = [ Gl(t) Gz(t)dt
(o]

Given Poisson failure and installation rates, and given 1 + k = ¢ + 8
(all units are either in installation or in resupply so the system is not

operating)
(AJ) 02 (t) = e"i (y)t

Gl(t) depends or what state (i,k) was entered from. From Brumelle [3],

p.2, when there is a departure from the reduced system - i.e. a service =

resupply action is completed (cf Section 8) - service time remaining for each

open resupply action 1s independently and identically distributed with dis-
*
tribution H (t), the equilibrium resupply distribution.

Hence, if state (i,k) was reached by a resupply action
* k
(Ad) G, (t) = [1 -1 (c)]

The system found by an arrival, i.e. a component failure, is like that
foun’ by a departure [3]. However, this pertains to the k-1 units already
in resupply, not the arrival which will not result in a completed resupply
action until a full resupply time later. Hence, if state (i,k) was entered

from state (j,k-1), then
(AS) G, (x) = (1-u" () 1% (-nee))

Defining ETl and ET2 as the conditional expected time in a state given

that it was entered from a state with k+1 and k-1 components in resupply,

respectively:

a [ II“H*(t)]k e’i(x'W)tdt
[+

(A6a) ET1

N
O -




[

(A6b) ET, = f f1-n" ()1 L ancey e T g,
[e)

For deterministic resupply time, equal to 1/u:

* x x
(A7) H()=u f[l1-H(t)]dt =u s 1dt=ux x < 1/u
o o
= 1 x> 1/u
or
*
1 ~H{(t)=1-ut t < 1l/u
= 0 t > 1/u
Also,
1-H(t) =1 t < 1/u

To get ET from ETl and ETZ’ the conditional expectations are weighted
by the relative probabilities of entering (i,k) from states with number in
resupply of k+1l, k-1 respectively.

Comments. Even for the reduced system, the expected time in a state
depends on the resdpply distribution and possibly the state from which it
was entered, notwithstanding that the steady state probabilities of being
in a state are independent of resupply distribution.

For exponential resupply, it is well known that

ET = 1/ {A[cmax (o,k-s)] + (u) (k)}

As a check some examples were tried and ET derived by the procedure just
described, weighting ET1 and ET2, reduced to the correct answer when the
exponential equilibrium distribution was used in A7.

The use made of Brumelle'§ results is not entirely correct because in
getting to state i,k from state j, k+l, j is implied by {; hence we know

more than that we left some state p_ K+1 and conditional on this knowledge
’

the equilibrium results may not entirely hold.
Example: Let s =1 and ¢ = 2. We wish to calculate expected time in

state (1,2); f.e., 1 in installation, 2 in resupply.

IR U




Referring to (A6) and using (A7) and (A3)

1/u
(l—ut:)2 et e o

(a8) B, =/
o
2
1 2u Aty =(A+y)/u
e | -1+ 1
T ()\+T)3 u €
1/u
E, =/ (1-ut) T 4 o
“ o
u [7\_4—1_ -1+ e (AtY)/u]
2 u
(A+y)

State (1,2) can be reached from states (0,3), (2,1) or (1,1) with
instantaneous transition probabilities of 3u, 2A and A\ respectively (recall
we assume transition probabilities based on exponential are valid). Note that

if we are in state (1,1) there is an operating component, a component in
To go from (1,1) to (1,2) the operating

installation and one in resupply.

component must fail, hence the transition probability of ).

Hence
Pg,3(3WE) + [py;(20) +p) )] E,

E -
12 p0,3(3u) + p21(2k) + pl,l(k)

where the Py are gotten from step 1.
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APPENDIX 2 j
. FAILURES DURING INSTALLATION ﬂ
E
L} Notation
p - probability of failure during installation
t - expected time to fallure, during installation, given a failure I
during installation
! MITI - mean time to install
! TMTTI - expected total mean time to install including time to get
another component if first fails during installation
LDT - mean logistic down time (time to get a component)
MTBF - mean time between failure
r - 1/MTTI
f - 1/MTBF
# Case 1: 1Installation time (given no failure) is deterministic. Failures are
exponential.
Then

TMTTL = (l-p)MTTI + p [t + LDT + TMTTI]

TMTTI = MTTI + P—U—lf—p-‘im

and
b= - o (D)QITD
MTTI ]
t =1 ! t £ e Ttqe ]
P o

Case 2: Installation Time and Failures are Exponential.

Then

Probability of no installation by time x is e—rx’ so

p=f £fef* (™ ax

~(f+r)x _ £

o
f (-]
= ; (f41) e e

£4r
o
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e ws
[V

e g e =

S xfe Te Tdx ©

_9 _1 f ! -(f+r)x
t 5 > Fir o (x) (f+r)e dx
f 1 1

1
p f+r f4r f4r
When installation times are exponential, the fact that installation was

completed before a failure occcurred, tells us something about how long the

installation took. If

MTTIC = Ex(Installation TimelInstallation occurs before failure)

Then, by a derivation analogous to derivation of t,

0

-fx -rx
S xre Te Tdx
[

=1
1-p f+r

MTTIC =

This equals t. In other words, something will happen in average time of
(f+r). With probability p it is a failure and probability (1-p) it is an

installation.

TMTTI = (1-p) (MTTIC) + p[t + LDT + TMTTI]
and by algebra

TMTTI

MTTIC + Cigs)[t + LDT]

+I s om

1
f+r f+r

1

f f
rawe Q+ ;) + T (1.DT)

- —1-+
r

|

(LDT)
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